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Abstract--In this study a model which was developed previously is used to theoretically investigate the 
steady flow of a particulate suspension into two-dimensional horizontal and inclined channels. The 
continuity equation for the fluid and the simplified two-dimensional Navier-Stokes equations are then 
solved together with a particle concentration equation. This latter equation is formulated by considering 
the balance between the particle flux due to gravity with the corresponding particle fluxes due to 
convection and shear-induced diffusion. The resulting coupled system of equations is solved numerically 
using a specialised finite-difference method. It is found, for the parameter range for flows of proppants 
in hydraulic fractures, that when the suspension enters the channel with a uniform velocity profile it almost 
instantaneously becomes parabolic. In addition, the effects of particle sedimentation are most dominant 
in the entrance region, but further downstream such effects are balanced as shear-induced particle 
diffusion becomes more important. It is also shown that the suspension flow depends critically on the 
choice of the parameters used, e.g. the ratio of the particle radius to the height of the channel. Copyright 
© 1996 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

It has been reported in earlier studies, e.g. Leighton & Acrivos (1986, 1987) and Phillips et al. 

(1992), that, within particulate suspensions which undergo shear, a flux of particles is induced 
from regions of high to low shear and from regions of high to low particle concentration. This 
phenomena, known as shear-induced diffusion or migration, is caused by irreversible 
hydrodynamic interactions between neighbouring particles and it is found to be different from 
conventional Brownian diffusion which arises from molecular motion. 

Shear-induced migration is of great importance in many industrial applications, including the 
manufacture of composite materials, the separation of particulates from slurries and the safe 
production of solid rocket fuels. This phenomena also influences the process of proppant placement 
within hydraulic fractures which are used in the hydrocarbon extraction industry. In this type of 
operation proppant particles, which are transported within a carrier fluid that is pumped into the 
fracture, are required to sediment evenly along the length of the fracture and thus keep it wedged 
open. However, occasionally proppant particles sediment with a high settling velocity and this may 
result in the formation of proppant banks at the bottom of the fracture. As a result, a bridge could 
form across the fracture and prevent the deep penetration of particles which may lead to fracture 
closure. A low settling velocity results in a more even distribution of proppant particles along the 
entire length of the fracture and thus can avert fracture closure. Shear-induced migration is one 
aspect which is thought to interfere with the settling rates of proppant particles and if properly 
exploited it may have a positive influence on the process of proppant placement within hydraulic 
fractures. 

There are many different types of interparticle interactions that may be of importance within 
concentrated suspension flows. Since a model which rigorously takes into account each of these 
effects for a many particle system would be computationally expensive, especially in view of the 
fact that industrially interesting flows are generally complex in nature, a simpler model which takes 
into account the relevant physics of a suspension must be devised. Hence, a continuum model, 
along the lines of that considered by Leighton & Acrivos (1986), must be used. In such a model 
empirical expressions are formulated for each of the particle fluxes resulting from the key 
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mechanisms occurring within the suspension and a concentration equation is then developed by 
considering simple balances between the various particle fluxes. In the studies undertaken by 
Leighton & Acrivos (1986) and Schaflinger et al. (1990) the fully-developed Couette and Poiseuille 
shear flows within rectangular channels, respectively, were among the flows examined. In these 
studies the conservation of mass and the one-dimensional momentum equation were solved, 
together with the particle concentration equation, which was developed by considering a balance 
between the downward flux of particles due to sedimentation and the upward flux due to 
shear-induced diffusion. Later, Zhang & Acrivos (1994) used a similar model to theoretically 
examine a more intricate fully-developed suspension flow within a horizontal pipe. More recently, 
Pelekasis & Acrivos (1995) considered the problem of a steady laminar flow of a well-mixed 
suspension being convected steadily past a horizontal flat plate. They found that the particle 
concentration took the uniform upstream value everywhere except in two layers either side of the 
plate due to the presence of shear-induced particle diffusion balancing the particle flux due to 
convection and sedimentation. 

In the present study we consider the steady laminar plug flow a well-mixed suspension which 
enters a rectangular channel as this is a reasonable model for the flow of proppant particles entering 
a hydraulic fracture. It should be noted that if dynamic effects are not present then three distinct 
regions exist, namely, a sediment layer near the bottom surface, the initial suspension in the middle 
and a clear fluid layer near the top surface of the channel, and each of these regions is separated 
by kinematic shocks. The structure of the concentration within the sedimentation layer depends 
upon both the initial concentration and the assumed form of the hindered settling function. 
However, with the inclusion of convection and diffusion effects only a clear fluid region and a 
continuously varying suspension layer exist. Within the channel the governing non-dimensional 
particle concentration equation, which takes into account the effects of convection, diffusion and 
sedimentation, and the two-dimensional momentum equations are simplified by considering the 
magnitude of each of the terms present when values of the important parameters relating to the 
flow entering a hydraulic fracture are utilized. The strongly coupled governing nonlinear system 
of equations is then solved by devising a specialised numerical scheme and the results discussed. 

2. FORMULATION 

Suppose a suspension of particles is driven by a pressure gradient into a 2-dimensional channel 
of height H which is inclined at an angle 7 to the horizontal, see figure 1. A Cartesian coordinate 
system is set up such that the x* and z*-coordinates are along and perpendicular to the bottom 

z*~ Typical 
[ velocity profile 
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x. u ~  t g 
Figure 1. Schematic diagram of the coordinate system, notation and typical velocity and concentration 

profiles. 
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surface of the channel, respectively, and x* = 0 is at the entrance to the channel and the fluid 
velocity components are u* and w* in the x* and z*-directions, respectively, i.e. _u* = (u*, 0, w*). 
It should be noted that the superscript * denotes dimensional quantities throughout. The 
suspension is assumed to enter the channel with a x*-component of velocity u* = Uof~(z*) and with 
an initial concentration ~s, where U0 is the characteristic fluid velocity in the x*-direction and 
is a dimensionless function. For mathematical simplicity the particles are assumed to be rigid 
spherical and of uniform size with a radius a, but an extension to other shaped particles is possible. 

The obvious length scale in the z*-direction is the height of the channel, H, and suppose the 
fluid velocity scale in the x*-direction is U0. The corresponding dimensional scales for the length 
in the x*-direction and the velocity in the z*-direction are taken to be flH and trU0, respectively, 
where (r and fl are parameters to be determined. It should be noted that the velocity scale in the 
z*-direction can be taken to be the Stokes velocity, u,, i.e. the terminal velocity at which a single 
particle falls through a clear fluid, and this is given by 

2 ga2(p2 - p,) [ll 
u, - 9 #t 

for a rigid sphere of radius a and density 192 which moves through a fluid of density p~ and viscosity 
#~. Thus, the dimensionless variables are given by 

x* z* u* w* w* p* _p- -  =#--  
x - ( f i l l ) '  z = - ~ ,  u=-~o, w- (aUo)  u---7' P-(ptU~o)' P ~ - p , '  I~, #1 [21 

where p is the dimensionless pressure field, pr and/~r are the relative density and viscosity between 
the particulate suspension and the clear fluid, respectively, and are expressed as 

P* pz - pt p r = - - = ( l + E ~ b )  with E= />0 [3] 
pl pl 

and 

u r = ~ - =  1 + [4] 

respectively, see Zhang & Acrivos (1994), where ~b is the local particle volume fraction and 40 is 
the volume fraction of particles in the state of close packing and typically takes the value 0.58, 
see Leighton & Acrivos (1996). 

For an incompressible flow, assuming that the suspension can be considered as an effective 
continuum and that its rheology is Newtonian, the dimensionless continuity equation takes the 
form 

1 Ou Ow 
~/~ ~ + ~ = 0. [51 

As both the terms in [5] should balance we therefore take trfl = 1, i.e. 

a__U_U Ow 
Ox + -~z = 0 [6] 

and from [2] we have the relation 

1 U0 
O" Ut 

For steady flow, the particle mass balance is 

V*.(_u*~)  = - V * . _ J  

[7] 

[8] 
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where J is a combination between the diffusive flux due to shear-induced migration, _Ns, and the 
sedimentation flux due to gravity, _Ng, which is given by 

_J = Ns + _Ng. [91 

By using simple scaling arguments, Phillips et al. (1992) derived an expression for the flux resulting 
from shear-induced diffusion, which was given as 

_Ns = -OcV*gb -- OsV*9* [101 

where the dimensional absolute shear rate, 9", is expressed as 

du* 
9" = dz* [111 

and Dc and D~ are both dimensional diffusion coefficients whose dimensionless forms are 

D~ 1 d/tr 
Dc =- ~ = K¢O+ K.(o 2 [121 

/Jr d~b 

and 

Os  
/)s -~ ~ = Kc¢ 2 [131 

where Kc and K, are constants which have to be determined experimentally. For all our calculations 
we will impose Kc and K, to be 0.43 and 0.65, respectively, i.e. the values obtained in Phillips et al. 

(1992). The expression for the sedimentation flux is given by 

_Ng = _u~b [141 

where _us is the relative velocity of the particles with respect to the bulk flow and it is given by 

us = utf(4))(g/g) [15] 

= _Up -- _u* [16] 

where _Up is the particle velocity. The hindered settling function, f(~b), is expressed by Leighton & 
Acrivos (1986) as 

f(4) ) _ 1 - q~ [171 
/it 

By applying the continuity [6] to [8], and neglecting the effects of gradients in the shear in [10], 
the dimensionless form of the particle concentration equation can be written as 

u +W z [181 

The effects of gradients in shear are neglected since, in this case, shear-induced diffusion due to 
a gradient of concentration dominates, see Schaflinger et al. (1995), however, they may be 
significant for flows within horizontal pipes, see Zhang & Acrivos (1994). Additionally, their 
inclusion would result in third-order spatial derivatives occurring in some of the velocity terms 
appearing in the governing particle concentration equation which would make the problem much 
more difficult to solve. The dimensionless x and z-momentum equations are given by 

8u ~u u~+w~+ 
P~(4)) c~x Pd~) flRp .ud4)) ~ +/~ u,(~b) ~zz 

1(9) + ~  ~ qbsina [19] 
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and 

u 7x + w 7z + Pr(4)) OZ -- pr(~b) flRp Lfl Fx ~# (q~ 7x + fl /'Lr(~)) ~-Z 

respectively, where 

Vr(O) 4 COS CX [201 

a [21] 2=~, 

and the dimensionless quantity Rp is the particle Reynolds number which is given by 

Rp - plu,a [22] 

A knowledge of the range of values taken by the parameters in [18]-[20] is required if we are to 
be able to model a particular process involving the flow of a suspension in a rectangular channel. 
For the case of a hydraulic fracture this is found by considering a typical range of field variables, 
see for example Economides & Nolte (1989), namely fl .-. O(10) to O(103) and 2 ~ O(10 -x) to 
O(10-1). Additionally, it is well known that the effects of shear-induced diffusion are usually 
observed when the particle Reynolds number, Rp, is O(10 -3) or less, see Leighton & Acrivos (1987). 
Although Rp falls well within this domain, in order to limit the number of parameters occurring 
in our problem~the value of the particle Reynolds number is imposed at 10 -3 and further E is taken 
to be unity. 

In the present analysis the three non-dimensional parameters governing the shear-induced 
diffusion are 2, Rp and fl, whereas Pelekasis & Acrivos (1995) opted for E, Re and Gr, where 
E = 2(H/L) ,  Re = LflRp/(2H),  Gr = L3Rp/(2H) 3 with L a function of Re, Gr and E. However, 
if we retain their choice of parameters in the physical situation being considered here we would 
be faced either with increasing the number of non-dimensional parameters by introducing the extra 
parameter H / L  or, since H is a naturally occurring length scale, replacing the artificially introduced 
length scale L by H. In a hydraulic fracture the ranges of the alternative non-dimensional 
parameters E, Re and Gr would be O(10 -3) to O(10-~), O(1) to O(103) and O(10) to O(105), 
respectively. The advantages of the dimensionless groups chosen by Pelekasis & Acrivos (1995), 
assuming L is replaced by H so that E = 2 and the number of non-dimensional parameters remains 
the same, are 

(i) it avoids combinations of large and small parameters, e.g. ERe, EGr, arising in the governing 
equations, 

(ii) it allows the experimentalist to easily alter each individual non-dimensional parameter, i.e. 
change E by varying the radius of the particles, change Re by varying the characteristic fluid 
velocity and change Gr by varying the density of the particles. 

Unfortunately, the present choice of non-dimensional parameters, namely, 2, Rp and fl fails to 
satisfy the first criterion since combinations such as 42//and 2flRp are present in [23] and [24] and 
the second criterion is only met in the case of fl, since it is possible to change only this quantity 
by varying the characteristic fluid velocity. Changes to only 2 would require modifications to the 
experimental apparatus in the form of adjustments to H, whilst changes to Rp would require 
complex adjustments to both the characteristic fluid velocity and to the fluid and particle 
parameters. However, it should be emphasized that the physical problem under consideration is 
that of shear-induced diffusion within a fracture where conditions correspond to a small fixed value 
of Rp, taken as 10 -3 in all our calculations, and we wish to investigate the effects of changes to 
both the characteristic fluid velocity and to the fracture width. Whilst the former change can be 
achieved using either group of non-dimensional quantities, the latter one is only possible with the 
present set, since changes to the fracture width affect Re and Gr as well as 2. 
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In [18] and [19] it is clear that the term which includes a factor 1///is substantially smaller in 
magnitude than the term which has a factor// .  Hence, for a hydraulic fracture [18] and [19] can 
be approximated by 

04~ 04, ~_z ( 0 u -  Oq'~) 0(4~f(4~)) 
u ~ + w - E  = .~2// ~ oo(,~) ~ + 0z - -  cos ~ [23] 

0 .  Ou 1 Op 2 0 ( ~ )  1 ( 9 )~bsin~. 
ub~+.,Tz + pr(l~) 0X pr(qS)Rp 0Z ['Lr((J~) + ~ [24] 

In [20] the terms involving/t2 and 1/(2Rp) are dominant in the case of a hydraulic fracture and 
therefore we have 

8~ - - ~b cos ~. [25] 

To complete the formulation we need to consider the boundary and entrance conditions. Although 
there is evidence of particle slip along solid walls in suspension flows, see Yilmazer & Kalyon 
(1989), it was shown by Schaflinger et al. (1990) that this had very little effect on the solutions 
obtained for a fully-developed Hagen-Poiseuille flow in a horizontal channel. Hence, in this study 
the condition of no-slip is assumed at both solid boundaries. Additionally, at the boundaries there 
is no net flux of fluid, _u • n, or particles J .  _n, where n_ is a normal vector to the boundaries, and 
at the entrance to the channel the velocity is (Uo~(z*), 0, 0) and the particle concentration is ~bs. 
The dimensionless boundary and entrance conditions are given by: 

2 ~ 0 u  04~ 
At z = 0 ,  O < x < o o : u = w = O  and 2 / /Dc~zz~-z+~bfcos~=0  [26] 

, ~2Rr~ 0 u a ~  At z = l  O < x < c ~ : u = w = O  and -e=CSzSz+Ckfcos~=O [27] 

At x = 0 ,  O<~z<<.l:u=~(z), w = 0  and qS=q~ [28] 

where ~(z) and 4~ are to be specified and in the case of plug flow fi(z) = constant. 
[It should be noted that the boundary and entrance conditions [26]-[28] are not affected by the 

simplifications made because we are considering parameters in the range appropriate to a hydraulic 
fracture.] Equations [6] and [23]-[25] and the boundary conditions [26]-[28] represent a coupled 
set of non-linear, parabolic partial differential equations which can be solved numerically using 
a marching procedure and solving the resulting algebraic equations iteratively at each x location 
before proceeding along the fracture. Since we know that far from the entrance to the channel sharp 
gradients in concentration may occur, obtaining a convergent solution is likely to cause a problem. 
To overcome this possible difficulty we may be required to use a nonlinear grid, or an adaptive 
grid system, which becomes finer in regions where the solution varies most rapidly and coarser in 
regions where there is little variation in the unknown variables. 

It should be noted that if the plug flow becomes fully-developed then there is no x-dependence 
and it can be deduced from 16] and [23]-[28] that 

22. du/~ dq~ /~Tz O-~z + 4 'fcos~ = 0  [29] 

and 

Xzz)-- - K -  sin  [301 
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where K is a constant. The parameters 2 and fl can be used to obtain the modified Shields number, 
x, see Schaflinger et al. (1990), and it is given by 

1 

x = 22/~ (1 - 4~s)fi(z) dz. [311 

Therefore, provided the same parameter values are used, the initial two-dimensional plug flow will 
eventually tend after a non-dimensional development length, L , / H ,  down the channel to a 
fully-developed flow situation which is the same as the solutions obtained via [29] and [30]. The 
criterion given by Schaflinger et al. (1995) is 

L,  K/-/a [32] 
H 8a 2 

which becomes, on using [31], 

~ ~ (1 - -  q~s)fi(z) d z .  [331 

3. NUMERICAL PROCEDURE 

In order to obtain the particle concentration and fluid velocity profiles throughout the channel 
the coupled continuity, concentration, x-momentum and z-momentum equations, namely [6] and 
[23]-[25], respectively, must be solved subject to the boundary and entrance conditions [26]-[28]. 

The continuity [6] is automatically satisfied by introducing the non-dimensional stream-function, 
~k, in the usual manner, namely, 

a~, &¢, [341 U = T z  and w =  &x' 

The streamfunction formulation [34] will result in third-order derivatives in ~O arising in [23] and 
[24]. To reduce the order of such derivatives we let 

s(x ,  z)  - &O [35] 
&z 

and 

Sl = s(x, z), s2 = s(x + &x, z), 4), = 4)(x, z), ¢b2 = (x + &x, z) [36] 

where fix is a small step length in the x-direction. Further, we write 

S = S l + S 2 ,  ~=~b l+~b :  and s ~ ½ S ,  c ~ ½ ~ .  [37] 

On substitution of relations [34]-[37] into [23] we obtain 

2 r ~ , C a 2 s o ¢  a s a - ' ~ l  z~: ,~  a s ( a , ' l  2] t381 + 2 flL2Dc(~q~)~5-z2 &z-z +-~-~-z2 j + (~)~-z\az ]_] 
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and [24] has been combined with the integral form of [25] to become 

( ~ )  4 { { 9 c o s , ' ~  ['-- q~ -- 24', dpo] ( £ : S - 2 S S d z ' ~ C ~ S  
2 S  + ~ - \ 2 ) ' f l 2 R p J  Jo -~fc dz  + d x  J - 2 fix J Oz 

where po(x)  = p ( x ,  0) and 

1 2 ( , 82S , ,  a s a & )  1 (9sina). 

~1-2~ 4'(1-4,) 1 e(4,) = / - ~ 7 ~  - ~ ( ~  ~;(4,) cos ~. 

The boundary conditions [26]-[28] become 

and 

[39] 

[401 

and 

It is expected that the unknown variables, especially the concentration, will change rapidly in the 
neighbourhood of the suspension-clear fluid interface. In order to resolve these rapid variations 
in the unknown variable it is necessary to have a sufficiently large number of finite-difference grid 
points across the channel but this leads to larger CPU times being required for the numerical 
calculations to converge. In order to reduce the CPU time it is necessary to use a non-uniform 
distribution of grid points so that the spacing between the points becomes smaller in regions where 
the unknown variables change rapidly and larger elsewhere. 

A finite-difference scheme for a non-uniform grid system is derived as follows. Suppose ® is a 
continuous function with continuous derivatives and that {z,} e [0, 1] is a monotonically increasing 
sequence. By using Taylor series, and neglecting terms which are O(Az04, O(AzD 4, we obtain 

where 

s , ( x ,  z) = fi(z) and ( / ) I ( X ,  z) = 4's at x = 0; 0 ~< z ~< 1. [43] 

and 

O(z ,  + zXz,) = O(z , )  + ( A z , ) O ' ( z j )  + l (Az i )20" ( zO  + ~(zXz,)30"(zO + . . .  

O(z ,  + ZXz2) = O(z , )  - (Az2)O' (zO + ~(ZXz2)iO"(zO - ~(az2)3O"(z,)  + . ' .  

I~Z I = Zj + 1  - -  Zj [461 

Az2 = zj -- Zj_l. [47] 

By subtracting [45] from [44], and neglecting terms which are O(Azl) 3, O(Az2) 3, we obtain 

6)(zj + Az,) - O(z j  - Az2) = (Azi + Az2)6)'(Z~) + ½((Az,) 2 - (Az2)Z)@"(zj)  + • • • [48] 

which on simplification, via [46] and [47], becomes 

6)'(zj)  = 6)(zj+ ~) - O(zj_ ,) + O(Az ,  - Az2). [49] 
Z j + I  - - Z j -  1 

[44] 

[45] 

: ~SScb 2 ~f(½~)cos = 0  at =1 ;  0 < x < ~  [42] S= S-~x2S, dz=0 and / 5 ~ z ~  + 0~ Z 

S - 0  and bcSSS~b+ 2 q~f(½~)cos~=0 at z = 0 ;  0 < x < o o  [41] 
0z 8z 
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Now, by multiplying [44] and [45] by Az2 and Az,, respectively, and adding we obtain 

(AzgO(z, + Az,)  + (Az,)O(zj - A z 9  = (Az~ + Az,)O(z3 

+½(aZl)(Az~)(az= + azl)O"(z3 + ~(az=)((azl)  ~ - (az=)=)O"(zA 

which on simplification, via [46] and [47], becomes 

[501 

2 j) =  O<za- + [51] 
o " ( z A  - z,+, - z ,_1LL z,+,z, ] l zj zj_--7 ]A 

It should be noted that  the finite-difference relations [49] and [51] are both first-order unless 
Az, = Az2 and in which case they become second-order. For  this reason the rate of  non-uniformity 
of  the grid distribution must be kept small in regions where greater accuracy is required. 
Let 

zj = P(wj) [52] 

where P is a monotonical ly increasing polynomial function and 

wj = ( ] -  1)/N [53] 

where N + 1 is the total number  of  grid points across the channel. It should be noted that  the 
polynomial  function P is chosen so that P(wO = P(0) - 0 and P(wu+ l) = P(1) - 1. 

By applying the finite-difference schemes, given by [49] and [51], to [38] and [40] we obtain 

4(zj+, -- zj_ I)'Sj(Oj - 2q~,.j) - 4(zj+ 1 - -  Zj_ 1)2Ilj(O(, + 1 -- O,_ 1) 

=6xA.2jOI4~¢(½~j)(zj+t _ z j _ l ) { ( ~ _ - S j  Sj............~.-~11) 
i z, z , -  ( ~ j + l - ¢ j _ , )  

and 

- cI' j_ l \ } 
- z, 7 : , U  , + ' -  s,_,) 

+ 46x(zj+, - zj_l)2E(½Oj)(Oj+, - Oj_ ,) 

-1 
"1 1 - -  ~ j _ _ , ) 2 |  

+ D C ( ~ j ) ( S j +  l - -  S j - -  1) (4~j+  1 / 

2(zj+ x - zj_ ,)2Sj(& - 2Sl.j) - -  2(zj+ 1 -- zj_ t)ll j(&+ 1 -- &_ 1) 

+ 4(zj_+_, - - z j _  1) 2 
P r ( ½ ~ j )  { _ / 9 c o s ~ x \  _ ( 9  s i n , ' ~ ,  fix } 

[541 

Pr(½Oj) Rp , -- z., zj zj_, j 

) 
+p,(½¢,)(S,+, - S,_ ,)(¢j+, - ¢,_ i)~, 

respectively, where j = 1 . . . . .  N + 1 and the boundary  conditions [41] and [42] become 

[55] 

/5¢(½0,){(& -- S0)(O2 - 0o)} 2 
a(~727z,- ~ + ~ O,f(½q~,)cos ~ = 0 [56] 

/)¢(½0 .... ) (SN+2 2 ON) + ~ O u + ' f ( ~ # ~ + ' ) c o s  ~t = 0 [57] 
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and 

S] = S N +  I = 0 ,  I 1 N + l = 0  [58] 

where the integral terms in [38] and [42] have been replaced by numerical approximations via the 
trapezoidal rule, i.e. 

I1~ = 0 [59] 

l i t  = I l j_l  + ½{(Sj , - 2s,.j ,) + (St - 2Sl.j)}(-ys - zj_ ,) [60] 

12t = 0 [61] 

I2j = I2j , + ½{(q~j_, - 2qSLj_ ,) + (q~j - 2qS,.j)}(zj - zj_ ,) for j = 2, N + 1. [62] 

An iterative method is considered in order to solve the resulting nonlinear system of algebraic 
finite-difference [54]-[58]. This method entails the following steps: 

(a) The initial solutions profiles for the velocity, fi(zj), and particle concentration, ~b~(zj), are 
stored in the arrays s,.j and qS~.j, respectively. Approximate values for the quantities ~bj are obtained 
via [37]. 

(b) At the next streamwise step, i.e. in the x-direction, the quantities Sj are calculated by solving 
the finite-difference version of the x-momentum [55] subject to the boundary conditions [58], with 
the values of Sl,j, 4~.J and q~j, being substituted from (a). It should be noted that we solve N + 4 
equations with N + 4 unknowns, namely, (So, S, . . . . .  SN+ ~, SN+2) and dpo/dx.  

(c) The quantities ~b; are calculated by solving the finite-difference version of  the particle 
concentration [54], together with the corresponding boundary conditions [56] and [57], using the 
updated values of Sj obtained from step (b). In this case we solve N + 3 equations with N + 3 
unknowns, namely, (~0, q~, . . . .  , (~u+ 1, (~N+2)" 

(d) Steps (b) and (c) are then repeated using the updated values of Sj, q~j and dpo/dx.  
(e) This Newton iteration process is repeated until the difference between two consecutive 

solutions is less than some preassigned tolerance. In all the results presented in this work a value 
of 10 -6 has been found to be sufficiently small in that any further reduction in this value produces 
results which are graphically indistinguishable from those presented. Typically convergence is 
achieved within about five iterations. 

(f) The values of  st and ~bi are calculated via the relations 

s t = S t - s l . j ,  ¢p,=qbj-crp, . j  for j =  1 , N +  1 [63] 

and are stored in the arrays s~.j and ~bl.t, respectively. 
(g) We then march forwards to the next streamwise location and the steps (a)-(f) are repeated. 

The algorithm is repeated until two solutions at consecutive streamwise steps differ by less than 
10 -4 , where it is assumed that the fully-developed situation has been reached. 

It should be noted that the solutions of  the algebraic finite-difference equations were obtained 
using a hybrid method, see Powell (1970), which finds a zero of a system of N nonlinear functions 
N variables. The main advantage of this method is that the system of equations can be decoupled 
and thus the equation solver operates more efficiently. The step length in the x-direction was kept 
constant for most of our computations in order to maintain numerical stability. 

Additionally, it should be noted that we obtained some solutions in which the particle 
concentration, qS, oscillated. In particular, this occurred in the region of the suspension-clear fluid 
interface which arose as a clear fluid layer formed below the top surface of the channel. In order 
to reduce such numerical noise in ~b, we used a simple filtering procedure which consists of  the 
following: 

(A) If the computed value of q5 is less than a preset constant, which is typically 10 -3, then we 
set ~b - 0. 

(B) If q~ > ~b~_ ,, where the positive integer k e [2, N], i.e. if the particle concentration begins to 
increase with z in any region of  the channel, then we impose 

~bk = ½(q~k-, + qSk +L). [64] 
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In the problem considered by Zhang & Acrivos (1994), similar numerical oscillations in the 
neighbourhood of  the suspension-clear fluid interface were also encountered and in order to 
overcome these problems they used a simple filter procedure similar to that described in (A). 

In order to check the computational accuracy of  our simulations, we used the following test. 
At each streamwise locations, x, the particle flux must remain unchanged, i.e. we required 

f0 ' ~bu dz = C [65] 

where C is a constant. As a test problem the finite-difference equations [54]-[58] were solved with 
the starting velocity and concentration profiles imposed as s~.j = fi(zj) = ~ and ~bt.j = dp,(zj) = 3 ,  
respectively, which result in the constant C taking the value 2.5 x 10 -2. Additionally, the angle 
of  inclination of  the channel, ~, was taken to be zero and the parameters 2 and/~ were set to 0.05 
and 50, respectively. 

Initially, meshes with uniform grid spacings in the z-direction were employed. In this particular 
case errors in the magnitude of  the particle flux, C, arose particularly for x > O(10-~), i.e. when 
the particle concentration began to swell in the region below the suspension-clear fluid interface. 
For  instance, even with 70 uniformly spaced grid points in the z-direction the error in the particle 
flux exceeded its required constant value by as much as 13%. By increasing the total number of 
grid points across the channel, i.e. reducing the grid spacings, it was found that obtaining a 
numerically stable solution in the neighbourhood of the suspension-clear fluid interface became 
increasingly difficult. In order to maintain numerical stability, i.e. prevent oscillations occurring 
in the solution in the region of  the suspension-clear fluid interface, it was necessary to decrease 
the size of  the step lengths taken in the x-direction, but this measure leads in turn to increased 
CPU times occurring. Even when the number of grid points was increased to 80, with the steplength 
in the x-direction decreased significantly from 10 -4 to 10 -5 , it was not possible to stop oscillations 
in the solution from occurring. Thus the solution procedure failed in the sense that a convergent 
solution to the finite-difference [54]-[58] could eventually no longer be attained. It should be noted 
that these oscillations could not be smoothed out by the simple filtering procedures (A) and (B) 
which were described earlier in this section. 

To achieve a greater conservation in the magnitude of  the particle flux it was necessary, when 
x > O(10-~), to increase the accuracy of the solution obtained in the region below the 
suspension-clear fluid interface. This was accomplished by using a mesh in the z-direction which 
had nonlinear grid spacings. By initially running the problem on a uniform coarse mesh in the 
z-direction it was possible to locate the region where the particle flux across the channel began to 
alter. Thus, by using this type of preconditioner, which did not require excessive CPU times, a 
suitable nonlinear mesh was constructed such that the errors in the particle flux could be reduced. 
In the nonlinear mesh used to solve the current problem, i.e. where 2 a n d / / w e r e  set at 0.05 and 
50, respectively, each grid point in the mesh was obtained via the transformation relation 

zj = 2w~j 3. - 6~w~ + (6~ - 1)wj [66] 

where wj is defined by [53] and ~ = 0.6. It should be noted that ~ was chosen approximately, via 
the uniform coarse mesh calculations, as the suspension-clear fluid interface height when the flow 
became fully-developed. As mentioned earlier in this section, the rate of  non-uniformity of  the mesh 
affects the order of  the numerical scheme used, i.e. the scheme becomes second-order in spatial 
accuracy if the rate of  non-uniformity tends to be zero but it is reduced to first-order accuracy 
elsewhere. The mesh in the z-direction is finest in the 'critical' region close to the eventual 
suspension-clear fluid interface, i.e. in the neighbourhood of  z = 0.6, and becomes coarser closer 
to the bottom and top surfaces of  the channel, namely z = 0 and 1, respectively. Hence, the 
numerical scheme is second-order close to z = 0.6 but its accuracy reduces to first-order away from 
this region. The advantage of  using this type of  mesh is that numerical oscillations can be eliminated 
in the region of  the moving suspension-clear fluid interface, whilst the behaviour of  the solution 
in the critical region, in which errors can build in the particle flux, is predicted accurately without 
the need of  excessive CPU times. 
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Table 1. The errors in the particle flux, when tJ = ~ and ~b~ = ½ with Rp = 10 -3, E = 1, 
,~ = 0.05 and fl = 50, as a function of  the n u mb er  of  grid points when using either a 

uniform mesh  or a non-uni form mesh created via [66] with :~ = 0.6 

N u m b e r  of  Max imum % error  Max imu m % error  
grid points for uni form mesh for non-uni form mesh 

20 39 15 
40 24 10 
50 19 5 
60 15 3 
70 13 < 1 

Table 1 shows a comparison between the maximum percentage errors in the particle flux and 
the number of  grid points in the z-direction for the non-uniform mesh which is given by the 
transformation [66]. It is observed that the errors in the particle flux reduce rapidly as the number 
of  grid points in the z-direction increases. When 70 non-uniformly spaced grid points in the 
z-direction are used the percentage error in the magnitude of  the particle flux drops to less than 
unity while when 70 uniformly spaced grid points were used the error is in excess of  13%. 

4. R E S U L T S  A N D  D I S C U S S I O N  

The finite-difference [54]-[58] were initially solved with the starting velocity and concentration 
profiles imposed as s~.j= fi(zj)= ~ and tklj = ~b,(zj)= 3, respectively, with the channel in a 
horizontal position, i.e. the angle of inclination, ct, is zero. By using the iterative method, see section 
3, it was possible to obtain convergent solutions to [54]-[58] and thus we were able to march 
forwards in the x-direction. Results have been produced for a wide variety of  values of  the 
parameters 2 and/~ which correspond to the range of physical interest in experimental or hydraulic 
fracturing applications, see section 2. A typical sequence of results showing the evolution of the 
particle concentration and velocity profiles is illustrated in figure 2(a) and (b), respectively, where 
the parameters 2 and fl were set to typical values associated with the process of  hydraulic fracturing, 
namely, 0.05 and 50, respectively, with fi = -~ and q~, = 3. The mesh system used to produce these 
accurate results is discussed in section 3. 

From figure 2(a) it is observed that the particle concentration in the upper region of  the channel 
depletes quite rapidly as we move in the x-direction. Even at x = 0.01 a layer of clear fluid of  
thickness about 0.05 is detected just below the upper boundary of the channel. In contrast, the 
particle concentration in the lower region of  the channel increases markedly as we move in the 
x-direction. For  instance, at x = 0.01 the particle concentration at the lower boundary of  the 
channel is 0.38 compared to 0.15 at x = 0. The reason for these results is that the particle flux due 
to sedimentation dominates the diffusion effects at small values of x. 

Eventually, the rate of  depletion of  the particle concentration in the upper region of the channel 
begins to decrease. This is illustrated in figure 2(a), where the height at which the suspension-clear 
fluid interface occurs does not change very significantly for the profiles at x = 0.3 and x = 1.0, i.e. 
it decreases by about 0.05 which is approximately the same decrease observed between x = 0 and 
x = 0.01. The reason for this is that the particle flux due to the shear-induced diffusion becomes 
more influential at larger values of x, since the shear rate within the suspension region begins to 
increase, and this counteracts the corresponding particle flux due to sedimentation more 
successfully than at smaller values of  x. By combining figure 2(a) and (b), it can be seen that the 
rate of  increase of  the fluid velocity with respect to z, or the shear rate, begins to increase just below 
the suspension-clear fluid interface. Additionally, in figure 2(b) it is strikingly noticeable that the 
initially flat velocity profile nearly instantaneously becomes parabolic. The reason for the sudden 
transition between a flat and parabolic velocity profile can be seen by examining [24]. Since the 
parameter combination 2/Rp --- 50 in this case, the order of the viscous term in [24] is much larger 
than the corresponding inertial terms which are O(1). Therefore, the velocity profile very rapidly 
becomes parabolic and this would be the eventual fully-developed result if no variations in ~b 
occurred. However, since ~b varies due to the effects of shear-induced diffusion and sedimentation, 
the u-component of  velocity changes beyond the first step in the x-direction due to its coupling 
with q~ occurring within the x-momentum equation [24]. 
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Figure 2. (a) The variation of  the particle concentration, ~, with the height above the bot tom surface o f  
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It was shown in section 2 that as the flow becomes fully-developed the governing equations 
reduce to the one-dimensional Hagen-Poiseuille flow equations, namely, [29] and [30]. Thus, our 
particle concentration and velocity simulations should approach those for the corresponding 
one-dimensional fully-developed Hagen-Poiseuille problem. Figure 2(a) and (b) also show, for 
2 = 0.05 and ~ = 50, how the fully-developed concentration and velocity profiles, respectively, 
compare to those obtained via the one-dimensional calculations. From figure 2(a) and (b) it can 
be seen that the 70 point non-uniform mesh, the eventual fully-developed particle concentration 
and velocity profiles are very similar to those obtained from the one-dimensional calculations. 
Hence, a maximum of 70 grid points in our non-uniform mesh was deemed satisfactory in order 
to produce sufficiently accurate simulations, such as those illustrated in figure 2(a) and (b). 

Figure 3(a) and (b) show the particle concentration and velocity profiles, respectively, when the 
problem is solved with 2 kept constant at 0.05 but with fl increased to 150, with ~ = -~ and ~s - 3. 
An obvious difference caused by increasing fl is that the particle concentration within the bottom 
region of the channel decreases, as seen by comparing figures 2(a) and 3(a). When the flow becomes 
fully-developed the particle concentration on the bottom surface is about 0.43 when ~ = 150 
compared to 0.47 when ~ = 50. As ~ increases the ratio between the characteristic flow velocity, 
U0, and the Stokes settling velocity, ut, increases but since the particle flux, see [65], is assumed 
unchanged then u~ must decrease. Thus, since u~ decreases as ~ increases, then the rate of the 
particle settling decreases and hence the particle concentration near to the bottom surface of the 
channel decreases. Additionally, by comparing figures 2(b) and 3(b), it can be seen that the 
u-component of the velocity within the suspension region is greater in the case ~ = 150 than in 
the case ~ = 50. However, the maximum u-component of velocity, which occurs just outside 
the suspension region, is greater in the latter case. These observations are compatible with the 
particle concentration profiles shown in figures 2(a) and 3(a), i.e. the effective viscosity, see [4], 
within the suspension region for ~ = 150 is less than that for ~ = 50. Thus, the suspension layer 
in the former case flows more easily than in the latter case. However, since the flux of clear 
fluid across the channel remains constant, the magnitude of this flux within the clear fluid 
region must be greater in the case ~ = 50, i.e. the maximum u-component of velocity is larger when 
/~= 50. 

Figure 4(a) and (b) show the particle concentration and velocity profiles, respectively, when the 
problem is solved with fl kept constant at 50 but with 2 increased to 0.1, with fi = ~ and qS~ = 3. 
By increasing 2 it is observed from figures 2(a) and 4(a), that the particle concentration within the 
suspension layer has decreased. If the channel height is unchanged then by increasing 2, i.e. the 
ratio between the particle radii and the channel height, we are effectively increasing the particle 
radii. Physically, spheres are more likely to interact with one another if their spatial size is greater, 
i.e. small spheres within a stratified shear flow are more likely to slip past each other than larger 
spheres. Thus, the shear-induced diffusive flux increases as 2 increases, since there are more particle 
interactions occurring, and hence the amount of migration from regions of high concentration to 
regions of lower concentration also increases, as illustrated by comparing figure 2(a) with 4(a). 
Conversely, if 2 decreases then it is expected that the corresponding diffusive flux reduces and hence 
a more concentrated suspension layer is likely to form. This is illustrated in figure 5(a) and (b), 
which show the particle concentration and velocity profiles, respectively, when the problem is 
solved with fl kept constant at 50 but with 2 decreased to 0.005 and the values of fi and q~s are 
unchanged. By decreasing 2 a thick stagnant sediment layer of maximum particle concentration 
forms on the lower surface of the channel in the immediate vicinity of the entrance. However, the 
rate of depletion of the particles from the upper region of the channel was less than that observed 
when 2 = 0.05. This is because, even at small values of x, the suspension in the region just above 
the lower surface of the channel becomes stagnant and if the particle and clear fluid fluxes are to 
be conserved their contributions from within the rest of the suspension, i.e. not including the 
stagnant region, must increase. This results in the u-component of the bulk velocity increasing away 
from the stagnant region, see figure 5(b), and thus the shear flow builds up rapidly which in itself 
induces a diffusive flux that opposes sedimentation. For the case 2 = 0.05, the shear within the 
suspension layer begins to increase at a greater distance along the channel than compared to the 
current case. For this reason the sedimentation flux is counteracted at a much shorter distance 
along the channel when 2 = 0.005 compared to that when 2 = 0.05. Thus, when 2 = 0.05 the 
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Figure 3. (a) The variation o f  the particle concentration, q~, with the height above the bot tom surface of  
the channel, z, for an initial plug of  well-mixed suspension of  particle concentration 0.15 with Rp = 10 3 
E = 1, 2 = 0.05 and fl = 150 flowing along a horizontal channel. (b) The variation of  the u-component  
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suspension layer depletes so that the suspension-clear fluid interface drops to just above z = 0.6, 
compared to z = 0.8 when )~ = 0.005. Figure 5(c) and (d) illustrate the particle concentration and 
velocity profiles, respectively, when the problem is solved with 2 held constant at 0.005, but with 
fl increased to 1000, and the values of  ~ and ~bs unchanged. By increasing fl to 1000 it can be seen, 
on comparison with figure 5(a) and (c), that the particle concentration profiles evolve in a similar 
manner to those observed for fl = 50, except in this case the concentration on the bottom surface 
is lower. In this case the particle concentration on the bottom surface of  the channel is 0.54 when 
the flow becomes fully-developed, compared to 0.58 when fl = 50. Additionally, on comparing 
figure 5(b) and (d), it can also be seen that the u-component of the velocity with the suspension 
is greater when fl = 1000 than when fl = 50, but the opposite is true just outside the suspension 
region. Explanations for these observations were discussed earlier in this section. 

In the study undertaken by Pelekasis & Acrivos (1995), the steady laminar flow of  a well-mixed 
suspension of  monodisperse solid spheres, convected steadily past a horizontal flat plate and 
sedimenting under the action of  gravity, was examined. In that problem the particle concentration 
profile was found to be non-uniform within two regions either side of the flat plate. This was due 
to the presence of  shear-induced particle diffusion that balanced the particle flux due to convection 
and sedimentation. In this study so far it is only possible to compare the value of the particle 
concentration at the top surface of the plate in the work of  Pelekasis & Acrivos (1995) to that at 
the bottom surface of  the horizontal channel. This is because, although sedimentation is the 
dominant process affecting the particle concentration on both the bottom side of the plate and the 
top surface of  the channel, the particle concentration is always zero on the top surface of the 
channel due to the initial entrance profile used so far. It is shown later, when a uniform plug of  
well-mixed suspension enters the channel, that the depletion of  particles from the top surface of 
the channel is similar to that on the bottom of  the plate considered by Pelekasis & Acrivos (1995), 
i.e. the particle concentration in both cases tends to zero at small values of  x. On the other hand, 
figure 6 shows how the particle concentration on the bottom surface of the channel varies with 
the distance along the channel, x, obtained for various values of  2 when fl = 50 and 150. It is 
observed that the particle concentration on the bottom surface of the channel decreases if either 
2 or fl are increased. Also, it is clear from these profiles that the particle concentration on the 
bottom surface initially increases fairly rapidly with respect to x but eventually levels off  and 
becomes almost constant. This is quite different to the profiles obtained in Pelekasis & Acrivos 
(1995), where the particle concentration continually increases with x up to the maximum packing 
concentration, ~b0 = 0.58. Intially, the increase in concentration with respect to x, as predicted by 
Pelekasis & Acrivos (1995), is quite rapid as in our case but then the rate of  increase slows and 
becomes approximately constant until it rapidly increases when maximum packing is approached. 
The reason for this is that Pelekasis & Acrivos (1995) have considered a Blasius type solution in 
which the shear stress remains constant within the diffusion layer unlike that observed in our 
problem. Consequently, as the sedimentation above the plate increases a region of  increasing 
viscosity together with its inversely proportional shear rates is formed, which in turn reduces the 
diffusive flux opposing sedimentation. The reason for the sharp increase in ~b with respect to x as 
maximum packing is approached is a result of the rapid increase of the viscosity in this situation, 
i.e. ~r--~ O0 as ~b-~b0. For  small values of  2, e.g. 2 = 0.005, the particle concentration on the bottom 
surface achieves the constant maximum packing value close to the entrance into the channel. This 
is because for such cases sedimentation effects dominate those due to shear-induced diffusion. The 
contribution of  the particle flux due to shear rate gradients, which is neglected in this study, would 
serve to counteract sedimentation effects and thus avoid the immediate occurrence of the maximum 
particle packing on the bottom surface channel. 

For  the values of  ~ and ~bs adopted in the results presented in figures 2-5, the non-dimensional 
development length proposed by Schaflinger et al. (1995), and expressed by [33], is such that 
L~/H ~ 17fl/960. A quantitative comparison between the experimental and numerical results is 
difficult for a variety of  reasons. However, a qualitative comparison suggests 

(i) in the experiments with ~bs ~ 1 and fl ~> 1 the value of  L~/H ~. 5, whilst the velocity and 
concentration profiles indicate that the fully developed situation has been reached, or is very close 
to being reached, before L~/H reaches unity. 
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(ii) the figures 5(b) and (d) clearly show that when fl = 50 the maximum velocity is within about 
10% of  its fully developed magnitude at x = 0.1, whilst at the same position when fi = 1000 the 
maximum velocity is only within about 25% of its fully developed magnitude. This indicates an 
increase in the magnitude of L~/H with increasing ~, However, the fact that the results presented 
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Figure 6. The variation of the particle concentration, q~, on the bot tom surface of the horizontal channel 
with the distance along the channel, x, for an initially well-mixed plug of suspension of particle 

concentration 0.15 with Rp = 10 3, E = 1 for various values of  2 and ft. 

in figure 5(d) indicate that L, /H does not exceed unity, even when fl = 1000, whereas the 
non-dimensional development length expression proposed by Schaflinger et al. (1995) suggests 
L~/H ~ 17, indicating that a small coefficient is required for equality in [33]. A fact supported by 
the experiments, where L~/H ,~ 5 thoughout. 

When the channel is inclined at an angle ~ (>  0) to the horizontal, then the pressure gradient 
Op/Ox drives the fluid together with the gravitational pressure gradient component, 
-9q~ sin a/(22flRp). If free flow conditions are to be achieved when the flow becomes 
fully-developed we must find fl, via [31], which corresponds to the appropriate value of ~c obtained 
in the one-dimensional calculations, see [30], when K = -9~b sin ~/(2E2flRp) where E is defined by 
[3] and it is taken to be unity in our calculations. If free flow conditions are to prevail when the 
flow becomes fully-developed then the pressure gradient, Cp/Cx, must tend to a constant vlaue, 
namely, -9q5 sin ~/(2E2/3Rp). Figure 7(a) and (b) show the particle concentration and velocity 
profiles, respectively, for the situation when a well-mixed plug of suspension enters the 
two-dimensional channel which is inclined at 15 ° to the horizontal with the parameters 2 and fl 
set as 0.05 and 26, respectively, with fi = ~ and ~bs = 3. As for the plug flow in the horizontal channel 
the initial particle concentration and velocity profiles are qS~(z) = 226 and fi = ~, respectively. The 
qualitative nature of the profiles obtained is very similar to the behaviour seen for the horizontal 
channel. In addition, the eventual fully-developed particle concentration and velocity profiles, see 
figures 7(a) and (b), respectively, are in good agreement to those corresponding profiles which were 
obtained by solving the fully-developed one-dimensional gravity-driven flow calculations, see [29] 
and [30]. When the angle of inclination increases to 30 °, with the entrance conditions remaining 
unchanged, we require fl = 150 for eventual free flow in the fully-developed situation. Again, our 
results agree well with those obtained via the one-dimensional calculations, see figure 8(a) and (b) 
which show the particle concentration and velocity profiles, respectively. It should be noted that 
the parameter values 2 -- 0.05 and/3 = 150 were also used in a corresponding horizontal channel 
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variation o f  the u-component  o f  velocity with the height above the bot tom surface o f  the channel, z, with 

conditions as in (b). 



STEADY SUSPENSION FLOWS 1245 

flow. The only noticeable difference in the two cases can be highlighted by comparing figures 3(a) 
and 8(a). It is observed that the particle concentration on the bottom surface of  the channel is 0.42 
in the horizontal situation, compared to about 0.40 in the inclined situation. This result could be 
attributed to the fact that in the inclined situation the particle flux due to sedimentation is 
proportional to cos ~ and hence its magnitude decreases as ~ increases. 

5. CONCLUSIONS 

In this study the problem of  a uniform particulate suspension entering a channel with a uniform 
velocity profile has been examined. The parabolic system of  partial differential equations governing 
the flow were discretised using finite differences and a marching procedure, aided by a 
Newton-Raphson iterative method, was used to obtain their solution. In order to check the 
accuracy of  the numerical scheme devised the following tests were used: 

(i) The particle flux must remain constant. 
(ii) The eventual fully-developed flow profiles must agree with the corresponding profiles 

obtained by solving the governing system ordinary differential equations which result when there 
is no x-dependence. 

When a uniform mesh was used across the channel the accuracy of the solutions obtained was 
not satisfactory. To increase the accuracy of the solutions and to maintain numerical stability a 
non-uniform mesh system was used in which more finite-difference grid points have to be assigned 
in the region of  the eventual suspension-clear fluid interface. By using such a technique, the 
percentage error in the particle flux decreased to less than unity and the eventual fully-developed 
solutions matched the corresponding one-dimensional solutions. 

Initially, the suspension was assumed to enter a horizontal channel and the parameter 2 was 
varied through a realistic range of experimental values appropriate to the flows of  proppant in 
hydraulic fractures, while/~ was kept unchanged. It was found that the flow was very strongly 
influenced by 2. In particular, at small values of 2, the particle concentration within the suspension 
layer began to approach the maximum packing value and the thickness of  this layer increase so 
as to cover almost the entire channel. This resulted in the formation of  a thick, stagnant suspension 
layer above which a narrow layer of rapidly flowing clear fluid existed. As 2 increases the height 
of  the suspension layer decreases, as does the particle concentration within it. Additionally, an 
increase in 2 results in an increase in the u-component of velocity within the suspension layer but 
a decrease in the strong flow in the clear fluid layer. When/~ was varied and 2 kept constant the 
flow was again influenced but not as strongly as that in the previous case when 2 was varied with 
/~ constant. It was found that as/~ increases the particle concentration above the bottom surface 
of  the channel began to decrease, and vice versa, but the thickness of  the suspension layer was 
virtually unaffected. In all the simulations the initially uniform velocity profiles almost 
instantaneously became parabolic at the entrance of  the channel. However, the corresponding 
particle concentration profiles developed less dramatically with sedimentation effects dominating 
at small values of  x, but which were counteracted by shear-induced diffusive effects at larger values 
of  x. It is found that the particle concentration increases above the bottom surface of  the channel 
and depletes from below the upper surface and the rate of increase or depletion depends on the 
parameter 2. When 2 is small the particle concentration builds up to the maximum 
packing value above the bottom surface of  the channel at small values of  x but the rate of depletion 
from below the top surface is slow. At larger values of  2 although the increase in particle 
concentration above the bottom surface is more gradual the decrease from below the top layer is 
much more rapid and gives rise to the formation of a substantial clear fluid layer even at small 
values of  x. In the region where the eventual suspension-clear fluid interface is located when the 
flow becomes fully-developed the particle concentration remains at its initial uniform entrance 
value for a considerable distance down the channel. It is found that the particle concentration 
increases below this region and decreases above it. However, the width of  this region of  constant 
concentration continues to decrease as one moves further down the channel. Eventually, when the 
flow becomes fully-developed, this region of  uniform particle concentration disappears. 
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When the channel is inclined at an angle ~ to the horizontal, the parameters 2 and//were chosen 
so that the eventual fully-developed suspension flow would become solely gravity-driven. This was 
achieved by obtaining the values of the modified Shields number, x, from the one-dimensional 
calculations and then calculating fl via [31], provided 2 was constant. With these combinations of 
parameters the initial plug of well-mixed suspension eventually develops into a purely 
gravity-driven flow. It was observed that the particle concentration within the suspension layer 
decreases as the angle of inclination of the channel increases. However, it was found that the 
qualitative behaviour of the suspension and the flow was very similar to that observed when 
pressure-driven flows were considered. 
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